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etting the right prices for loans is one of the central challenges banks face when seek-
S ing to optimally deploy limited capital. This is particularly important in the current

environment of shrinking deposits and increasing cost of funds.
Commercial loans are negotiated by relationship managers (RMs) who deal simultaneously
with many different clients in highly complex environments. As such, they require reliable,
accurate, and trustworthy pricing models to serve as the cornerstones of their negotiations.
Data analyzed by our SmartBanking Al* team has revealed an opportunity for banks to
better support RMs during negotiations through the application of Generative Al2. In fact,
banks can see a significant increase in margins with this approach.

In this article, we describe how we leveraged Al and Generative Al to determine the optimal
price setting and provide the best support to RMs. We began by letting two neural networks,
one representing a virtual client and the other a virtual RM, compete against each other in a
Generative Adversarial Network (GAN) setting. Presented with a specific loan profile, the
virtual client generated acceptance probabilities for a range of suggested prices, letting RMs
choose prices that optimize the risk-adjusted return rate.

We validated this approach on a loan dataset that had the rare feature of containing both
accepted and rejected loans. This allowed us to compare the realized revenues to the
expected revenues of our strategy, under the assumption that loans were accepted or
rejected due only to price—an outcome we considered likely given that the data stems from
an online platform that states prices for like-to-like loans. This analysis revealed a significant
increase in the expected average risk-adjusted rate of return.

Commercial Loan Pricing Strategies Fall Short

Currently, most bank RMs set prices by leveraging pricing grids that typically differentiate
price by type of loan (e.g., revolver, term), maturity, and the underlying credit-risk profile
(ideally including risk-based profitability measures such as the Risk-Adjusted Return on
Capital). The problem is that these pricing grids rely on a cost-plus approach to pricing (i.e.,
a minimum return), and the price ranges are set within rigid guardrails and not updated
often enough to reflect current market conditions. RMs, tasked with negotiating with clients,
therefore rely on intuition and experience to gauge important factors such as customers’
willingness to pay, stickiness, and price elasticity.

Loan-pricing grids function by segmenting portfolios into buckets, usually based on a only a
few dimensions such as client’s risk and rate index. Most banks add minimum thresholds to
ensure that risk and operating costs are covered and to achieve a desired return on capital,
such as by considering RAROC. While simple to operate, these grid-based pricing strategies
have several shortcomings:

e They do not take enough relevant information into account: To keep the pricing
grids transparent and simple, banks use only a limited number of dimensions during grid
development. Therefore, these pricing grids do not sufficiently account for the full client
relationship.

e They do not take market conditions into account: Pricing grids offer only a suggested
price range that, as noted, may not reflect changing market conditions, but rather the in-
ternal economics of the bank. This makes it difficult for RMs to weigh their options in the
trade-off between higher prices and lower acceptance rates.

1. https://www.bcg.com/industries/financial-institutions/ai-in-financial-services

2. Although most people know Generative Al for its potential to generate text and images due to famous
examples like ChatGPT and Midjourney, Generative Adversarial Networks (GAN) also represent one form of
Generative Al that learns to generate new data based on patterns found in the training data.
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e They do not focus on performance: Since pricing grids give only rough guardrails for
the price negotiation process, RMs are left with a high degree of latitude. This results in
the realized prices becoming overly reliant on each individual RM’s experience and
incentives.

To address these pricing-grid shortcomings, we developed a more sophisticated model that
predicts loan-acceptance probabilities. This model can support RMs during price
negotiations, enabling them to strike the optimal balance between loan prices, acceptance
probabilities, and the resulting risk-adjusted returns.

Finding Selective Price Adjustments with Loan-Specific Elasticity Curves

For an approach that predicts loan-acceptance probabilities, it is crucial to have not only
loans that clients historically accepted, but also loans they declined. Most banks, however, do
not have detailed records of the negotiations leading up to their accepted lending contracts,
or even of loan offers that clients declined due to pricing.

To enable banks to follow our approach and build models that predict loan-acceptance
probabilities even when they lack data on rejected loans, we developed an innovative
approach that constructs artificially generated rejected-loan prices using historically
observed accepted loans only. In this approach, we created synthetic rejected loans by
combining features from existing accepted loans with synthetic higher prices. These prices
were sampled based on price-acceptance curves we constructed by averaging modelled
parametric curves of loans within local clusters (as identified by a nearest-neighbor model
that put greater emphasis on features with higher predicting power when predicting loan
prices®). To validate that our approach delivers sufficiently useful results, we employed data
from a platform offering loans that, along with suggested prices and client/product profiles,
includes both accepted and rejected loans. This data allowed us to test our approach by
training a model on real accepted loans and our synthetically generated rejected loan
counterparts, and then demonstrate that the model performed well on a holdout dataset
that includes both real accepted and real rejected loans.

With this enhanced dataset in hand, we leveraged Generative Al and developed two neural
networks. The first neural network represented a virtual client that was trained to classify
loans as either accepted or rejected. We used it to produce price-acceptance probabilities for
a given client/loan profile at varying prices. After training the initial virtual client, we
complemented this model with a second neural network, representing a virtual RM trained
to generate prices that would maximize earnings based on given client and loan
characteristics. We then simulated thousands of negotiations between the virtual client and
virtual RM models (see Exhibit 1). The result was a refined virtual client to which we
subjected numerous attempts to raise its price-acceptance threshold on loans specifically
targeted by the virtual RM.

3. Predictive power of the features was derived from SHAP values taken from a boosted tree model trained to
predict loan prices.
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Exhibit 1: Simulated negotiations between RM and Virtual Client models

Using neural networks the modeling approach trains a Virtual RM and a
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Once the virtual client is sufficiently trained, it can be of significant help to RMs since, when
confronted with several prices for the same client/loan characteristics, it is able to draw an
acceptance probability curve for given client and loan characteristics (see black curve in
Exhibit 2 below). The RM (or, in most cases, the pricing tool supporting the RM) can then
use this curve to optimize price with respect to specific strategic objectives. For example,
RMs can find the price that maximizes the expected revenue calculated by multiplying price
and probability (see orange point in Exhibit 2). Alternatively, by accounting for costs
occurred due to defaults on loans, RMs or, precisely, the underlying pricing tool, can choose
the price that maximizes the revenue-after-risk cost (corresponding to the green point in
Exhibit 2). (Note that the black point in Exhibit 2 indicates the actual price negotiated by the
RM for the loan. This point can, however, be displayed only in our development setup—not
when predicting acceptance probabilities for new client/loan combinations as it requires
underlying historical observations for the same client/loan combination.)

We complemented the derived and optimal curves by adding the green density curve, which
indicates the distribution of accepted prices among similar real loans, and the red density
curve, which indicates the distribution of rejected prices among similar real loans. Similar
loans were found using a weighted-nearest-neighbors (KNN) approach that used higher
weights for those features that showed greater predictive power in a separately fitted linear
model predicting loan prices.
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Exhibit 2: Loan-acceptance profitability curve
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The model’s suggested price, which leads to a maximal expected revenue-after-risk costs
(green dot), is in the higher region of the historically accepted prices (green area) and retains
sufficient distance from the rejected prices (red area) to keep the acceptance-probability
high. In this case, the optimal price is higher than the actual price (black dot) negotiated by
the RM.

A unique feature of our approach is that it can identify historical prices that were set too high
and, thus, sacrificed too much in terms of potential sales volume and revenues after risk
costs. In Exhibit 3 below, the RM negotiated a very high price that, in the past, would have
led to rejection for most similar loans. Averaged across the entire bank portfolio, such a
price would be suboptimal because it precludes too much potential revenue. Our model
recognizes this inefficiency and suggests a lower loan price—one that is much closer to the
intersection of the historically accepted and rejected prices.



Exhibit 3: Loan-acceptance probability curve for inefficiently high price
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Deep Dive: Refining the Virtual Client through Simulated
Negotiations with a Virtual RM

From a technical perspective, our virtual client and RM models are implemented as neural
networks that can be combined to form the discriminator and generator of a generative
adversarial network (GAN). During training, the objective of the virtual client (discriminator)
is to distinguish real historical prices from artificially increased prices provided by the virtual
RM (generator). The virtual RM is given the competing objectives of increasing the price of
each loan while also increasing acceptance probability. The actual training process then
consists of a continual feedback loop between these two models. During each training
iteration the two models are alternately trained while staying in constant competition with
each other.



Exhibit 4: The virtual client and virtual RM model training process
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This process simulates real-world negotiations because the virtual RM consistently tries to
implement pricing increases while maintaining the virtual client’s acceptance probability for
the artificially increased price. During the first half of each training iteration, the virtual RM
is essentially forced to search for client/loan profiles in which willingness-to-pay has not yet
been fully realized. During the second half, the virtual client is given a chance to change its
own internal pricing criteria to adjust for the virtual RM’s new target-price increases.

Exhibit 5: Generative Adversarial Network Training
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During training the discriminator optimizes the standard
classification loss (binary cross-entropy) while trying to distinguish
between real and generated prices. The generator tries to optimize
a sum of two losses Lprob + Lyice that represent its competing

objectives.
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In addition to mimicking a real-world situation, our adversarial training method leads to a
quantifiable improvement in standard machine learning metrics. Adversarial training
improves both (i) the likelihood, which measures the extent to which the acceptance
probabilities given by the virtual client can be interpreted as probabilities in terms of the
data distribution?, and (ii) the area under the ROC curve, which measures the statistical
power of the virtual client as a classifier.

Virtual Client Models Lead to Maximized Revenues after Risk Costs

To test the economic viability of our model, we compared lenders’ actually realized average
risk-adjusted rate of return to the expected rate of return given by our model (see Exhibit
6). We observed that optimizing the prices resulted in a 26% increase in the risk-adjusted
rate of return. In contrast, the difference between the actual rate of return and the model’s
expected rate of return using the actual prices represents a fluctuation of only 7%. This
indicates that the increase observed for optimized prices represents an improvement
beyond statistical variation.

Exhibit 6: Comparison of RAROC for different pricing strategies

Average Risk-Adjusted Rate of Return per Negotiation

Actual Expected Optimized
1.92% 2.06% 2.42%
Conclusion

By leveraging Generative Al, our team was able to develop an alternative to rigid pricing grids—an approach that
enables commercial bankers to address the strategic optimization of prices by deriving client/loan-specific price
acceptance probability curves. Rather than suggesting constant or rule-of-thumb pricing increases, the model lets
bankers selectively target only those loan applications where prices should be adjusted. When used in loan
simulations, the neural network model enables bankers to set targeted prices that can maximize the average
revenue-after-risk costs across the entire portfolio of commercial loans. Within the used data set, this resulted in
an impressive 26% increase in returns.

4. For a classifier F, optimizing the log-loss is equivalent to optimizing the likelihood of obtaining the data points
(X, Y) by sampling labels Y = 1 with probability F(X) and Y = 0 with probability 1 — F(X).
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