# COVID-19 COVID-19 Diagnostics

Evolving past Flatten into Fight

Updated as of May 18, 2020; Please refer to BCG COVID-19 Microsite for updated materials

# This is the third in a series of materials focused on COVID-19 diagnostic testing

# How Ready is the US to Diagnose COVID-19?

#### RELATED EXPERTISE: MEDICAL DEVICES & TECHNOLOGY

# How Ready Is the US to Diagnose COVID-19?

MARCH 25, 2020 By Kristen Cook, Bob Lavoie, Joe Bernardo, Laura Furmanski, Barry Rosenberg, and Josh Kellar

#### 🖻 🖄 Tr f in 🎔 🖂

This is the first in a series of short articles on the role of testing in combating the COVID-19 outbreak. While the responsibility for diagnosis falls primarily on medical professionals and the companies that support them with equipment and supplies, business leaders need a baseline of knowledge on how testing works, what it is used for, and how it can help them restore operations and public confidence once the immediate emergency has passed.

### Link to article here

### How Best to Implement Coronavirus Testing in US

### How Best to Implement Coronavirus Testing in the US

APRIL 3, 2020 By Kristen Cook, Bob Lavole, Joe Bernardo, Laura Furmanski, Barry Rosenberg, and Josh Kellar

#### 🖻 🖄 Tr f in 🎔 🖂

This is the second in a series of articles on the role of testing in combating the COVID-19 outbreak. It examines the US's current ability to diagnose the disease and what the rapid scaling up of its testing capability means for the health care system, public health officials, and business.

### Link to article <u>here</u>



These materials



# COVID-19

## This edition of Dx testing is intended to provide clarity on 4 topics

# Testing use cases to fight COVID-19

What are the testing use cases as we fight COVID-19?

How do these change over time?

# Testing technologies available/coming soon

What are the testing technologies (molecular, serological, etc.) available in the market?

What other new technologies are expected or possible?

What use cases are they most relevant for?

What tradeoffs for each technology need to be considered?

# Testing capacity and considerations to scale

What is the estimated current capacity?

 US analysis example can serve as global blueprint

How much can we realistically scale?

What unlocks are needed to scale testing?

# Global learnings from scaling testing

How have responses varied globally?

What are policy implications from the global experiences?

What are the US implications on entering the fight phase?

3

## Important caveat and context for COVID-19 diagnostics current-state

Scientific understanding of the Covid-19 virus is dynamic and evolving rapidly

# **COVID-19 tests launched around the world have done so generally under emergency response oversight**

• Given these conditions, test selection for use requires careful scrutiny and assessment

# As tests are being deployed and scaled, real world clinical prospective trials are happening "real time"

• Independent clinical validation and QA recommended to ensure testing protocols/solutions implemented are robust

# No ASSUMPTIONS on population modeling are made in these materials



## COVID-19 diagnostic testing use cases

Testing technologies available

Observed capacity and unlocks to scale

Global learnings from scaling COVID-19 testing

## In the near-term, testing capacity was focused on "flatten" and moving into global "fight" scenarios

G20

countries





# Near-term, testing to focus on diagnosis and triage, immune response testing and workforce monitoring

### Focus for the flatten and fight

## 1

# Population health surveillance

Leverage testing as part of larger toolkit / strategy to continuously track and monitor spread and prevalence of disease in broad population

Target population: General population, suspected contacts of COVID-19 patients

### Diagnose and triage symptomatic patients

Leverage installed base of diagnostic testing to quickly diagnose and triage symptomatic patients and inform clinical care

Target population: Symptomatic patients presenting at sites of care

### 3 Employ

### Employer-contracted workforce testing and monitoring

Build testing programs with large employers to screen employees as they return to work

### Target population: Employees upon return to work (identify potential immunity), ongoing monitoring of susceptible employees

### 4

### Immune response testing in affected individuals

Identify if patients have antibodies that indicate prior viral exposure and potential immunity

#### Target population: Recovered patients to confirm potential immunity

General population to uncover asymptomatic patients

## 5

Screening for therapy and vaccine development

Screen potential patients for clinical testing of vaccines and drug therapies in development

Target population: Unexposed individuals (vaccine) and infected patients (therapy)

# Summary | Different testing technologies/locations best-suited for use cases

| 1<br>Population health<br>surveillance                                                                                                                                                                                                                                                              | 2<br>Diagnose and<br>triage symptomatic<br>patients                                                                                                                                                                                         | 3<br>Immune response<br>testing in affected<br>individuals                                                                                                                                                                                                                             | 4<br>Employer-cont.<br>workforce testing<br>and monitoring                                                                                                                                                                                                                                                                                                                                                 | 5<br>Screening for therapy<br>and vaccine<br>development                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular diagnostic tests<br>provide highly accurate results<br>critical to avoiding false<br>positives/negatives and detect<br>disease earliest in progression                                                                                                                                    | Molecular diagnostic (MDx)<br>platforms as close to clinical<br>care as possible (HT instruments<br>in hospital labs, near-patient/<br>POC instruments) to provide<br>highly accurate results                                               | Serological tests (either<br>high-quality lateral flow or<br>high-throughput<br>immunoassay instruments)                                                                                                                                                                               | Combination of immunoassay<br>(serological antibody as well as<br>antigen) tests and molecular<br>diagnostics needed to find<br>immune patients (serological<br>antibody tests) and monitor un-<br>infected population (MDx or<br>antigen testing)                                                                                                                                                         | High-quality MDx/serological<br>(antibody and/or antigen) tests<br>needed to determine whether<br>someone has already been<br>exposed to disease (and<br>therefore not a candidate for<br>trials / vaccines)                                                                                                                                    |
| <ul> <li>Potential considerations</li> <li>Needs to be combined with other measure (e.g., contact tracing)</li> <li>Testing capacity dependent on disease prevalence (testing early in curve = fewer tests)</li> <li>May be possible to supplement MDx with high-quality antigen testing</li> </ul> | <ul> <li>Potential considerations</li> <li>Ability to scale MDx limited<br/>by supply inputs (e.g.,<br/>swabs) and installed base</li> <li>Sample-to-answer time is<br/>critical to inform care, so<br/>reference labs not ideal</li> </ul> | <ul> <li>Potential considerations</li> <li>Can by deployed at<br/>variety of locations<br/>(timing less critical)</li> <li>Many lateral flow tests<br/>coming to market likely<br/>with mixed quality</li> <li>HT capacity likely ~1-6+<br/>months away from<br/>deployment</li> </ul> | <ul> <li>Potential considerations <ul> <li>Can be deployed across variety of locations (timing less critical)</li> <li>Will need combined capabilities across testing types for complete offering</li> <li>Specific tests deployed (e.g., antigen vs. MDx) will depend on risk profile and availability of testing resources</li> <li>Quality issues for lateral flow (rapid) tests</li> </ul> </li> </ul> | <ul> <li>Potential considerations</li> <li>May eventually be<br/>deployed to many sites</li> <li>Quality issues for lateral<br/>flow tests; don't want to<br/>include patient who may<br/>taint results</li> <li>Potential good candidate<br/>for HT instruments since<br/>vaccine will come after HT<br/>capacity becomes available</li> </ul> |

Copyright © 2020 by Boston Consulting Group. All rights reserved.

US perspective: currently a wide range of estimates for COVID-19 testing demand (~2M-160M tests / week)

|                                               | American Enterprise<br>Institute                                                                                                                                              | Center for American<br>Progress                                                                                                                                                   | Harvard Safra<br>Center for Ethics                                                                                                                                                                                                                       | Paul Romer<br>estimate                                                                                                                                                                                                 |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDx demand<br>estimate<br>(per week)          | <b>2-3M</b><br>(revised from initial 750K)                                                                                                                                    | 8.75M                                                                                                                                                                             | 35-140M                                                                                                                                                                                                                                                  | 161M                                                                                                                                                                                                                   |
| 1                                             | Manual contact tracing                                                                                                                                                        | Use of wireless technologies                                                                                                                                                      | Manual contact tracing                                                                                                                                                                                                                                   | No contact tracing nor                                                                                                                                                                                                 |
| Tracing approach<br>& containment<br>policies | Testing used primarily to<br>diagnose and triage<br>individuals<br>Role of electronic tools to<br>enforce quarantines<br>Measures lifted on regional<br>basis based on gating | to perform automatic<br>contact tracing<br>Goal to reach Korea-level<br>testing coverage per case<br>Isolation of infected and<br>exposed individuals in<br>designated facilities | Electronic tools for warning<br>system and testing certificate<br>Test all symptomatic patients and<br>high risk groups and all contacts<br>Only contacts that test positive<br>req. to quarantine, those testing<br>negative subject to regular testing | surveillance<br>Goal to keep quarantined<br>population below 10% and<br>infection rate below 20%<br>Quarantines based solely on<br>repeated testing 7% of<br>population at random (entire<br>population every 2 weeks) |
| Perspective on<br>serological<br>testing      | Used to measure pop. level<br>exposure, but utility limited<br>by likely low level of<br>exposure (<10%)                                                                      | Used to inform who can safely return to work                                                                                                                                      | Used to understand community-<br>level prevalence and to determine<br>who are safe to return to work (only<br>in comb. with neg. PCR result)                                                                                                             | Assumed all tests are MDx<br>(but consistent with using IA<br>for some patients if late<br>enough in infection course)                                                                                                 |
|                                               | Manual contact tracing                                                                                                                                                        | Automated digital contact tracing                                                                                                                                                 | Manual contact tracing                                                                                                                                                                                                                                   | Testing only                                                                                                                                                                                                           |
|                                               |                                                                                                                                                                               | Automation and extent of contact to                                                                                                                                               | racing                                                                                                                                                                                                                                                   | Amount of testing required                                                                                                                                                                                             |

Source: "National Coronavirus Response: A Road Map to Reopening", AEI; Dr. Scott Gottlieb interviews with Ezra Klein, CNBC; "A National and State Plan to End the Coronavirus Crisis", CAP; "Roadmap to pandemic resilience" white paper; Harvard Edmond J Safra Center for Ethics; Paul Romer Covid Simulations; BCG analysis

**TESTING USE** 

COVID-19

CASES TO FIGHT

US



COVID-19 diagnostic testing use cases

## Testing technologies available

Observed capacity and unlocks to scale

Global learnings from scaling COVID-19 testing

# Several underlying technologies that detect different aspects of the COVID-19 pathogen/human immune response

|                                                                                                                                                                       | Immuno                                                                                                                                                                     | assays                                                                                                                                 |                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available and scaling across multiple platforms, others anticipated                                                                                                   | Several rapid and lab-based options available                                                                                                                              | First rapid test available, additional tests expected in 1-5 months                                                                    | Not currently available                                                                                                                                       |
| Molecular<br>diagnostics:<br>Detection of presence of<br>viral genetic material                                                                                       | Serological<br>(antibody) tests:<br>Development of<br>immune response to<br>virus in patients                                                                              | Antigen tests:<br>Presence of<br>viral particle                                                                                        | Viral load:<br>Quantitative amount<br>of virus                                                                                                                |
| <ul> <li>Direct detection of viral nucleic acids (RNA or DNA)</li> <li>Requires molecular testing</li> <li>Technologies</li> <li>PCR (various platforms on</li> </ul> | <ul> <li>Indirect detection of virus by<br/>measuring immune response<br/>(may be prior exposure or<br/>current infection)</li> <li>Requires validated antibody</li> </ul> | <ul> <li>Direct detection of proteins<br/>making up the viral "head"</li> <li>Requires validated antibody<br/>against virus</li> </ul> | <ul> <li>Quantitation of amount of viral genome in patient samples</li> <li>Requires large amount of data to link test result and patient outcomes</li> </ul> |
| market)<br>• LAMP <sup>1</sup> (methods published)<br>• NGS-based <sup>2</sup> (being pursued)<br>• CRISPR-based <sup>3</sup> (EUA approved)                          | Platforms<br>• Lab-based (high throughput)<br>• Rapid (lateral flow)                                                                                                       | Platforms<br>• Lab-based (high throughput)<br>• Rapid (lateral flow)                                                                   |                                                                                                                                                               |

# Diagnostic imaging and other clinical tests (heart, liver, kidney enzyme assays etc.) are an important factor in both managing individual patients and allocating resources, but not discussed in this document; timelines approximate and directional

1. Loop-mediated isothermal amplification; 2. Next-generation sequencing; 3. Clustered Regularly Interspaced Short Palindromic Repeats (DNA sequence that is the basis of a genetic sequence targeting system)

Molecular and antigen tests may detect virus genetic material prior to symptoms and Serology IgG/IgM antibody tests detect immune response after a week

TESTING TECHNOLOGIES AVAILABLE



1. Current tests detecting presence of viral genome are qualitative and are not meant to measure absolute amount or viral genome present (i.e., viral load)

Note: Curves of viral RNA and protein condensed for simplification, likely not identical values in practice Source: Wang et al., JAMA (2020); IgG/IgM product insert materials; Expert interviews; BCG analysis

## **Observations and indications**

Molecular and antigen tests detect the virus itself and provide the earliest detection window (may detect slightly before symptoms begin)

Immune response tests (serology antibody tests) are useful to understand past exposure and population-level disease prevalence, but do not detect disease early enough for diagnosis/tracing

# A summary of available and emerging testing technologies

Tools to detect immune response

|                              |                                                                                                       |                                                                                                  | 7                                                                                                         |                                                                                         |                                                                                                   | -                                                                                              |
|------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                              | MDx (PCR)                                                                                             | LAMP <sup>1</sup>                                                                                | CRISPR <sup>2</sup> -based                                                                                | NGS <sup>3</sup> -based                                                                 | Antigen                                                                                           | Serological (IgG/IGM)                                                                          |
| What is detected             | Viral genetic<br>material (RNA)                                                                       | Viral genetic material (RNA)                                                                     | Viral genetic material (RNA)                                                                              | Viral genetic material (RNA)                                                            | Viral protein                                                                                     | Patient immune response to virus                                                               |
| Sample type(s)               | Respiratory swabs,<br>saliva (LDT only)                                                               | Respiratory swabs, saliva                                                                        | Respiratory swabs, saliva                                                                                 | Respiratory swabs, saliva                                                               | Respiratory swabs, saliva                                                                         | Finger prick or venipuncture                                                                   |
| Platform<br>format(s)        | HT and semi-automated<br>lab-based, near-patient,<br>POC (equipment)                                  | HT lab-based, portable/<br>POC (equipment)                                                       | Near-patient lab-based,<br>POC (lateral flow)                                                             | HT lab-based                                                                            | HT and semi-automated<br>lab-based, POC (lateral flow)                                            | HT and semi-automated lab-<br>based, POC (lateral flow)                                        |
| Throughput                   | HT platforms 500-1k+/<br>day, near-patient and POC<br>platforms 20-90/day,<br>semi-automated variable | HT platforms 300-1k/day,<br>POC platforms variable<br>(dependent on production<br>vol and distr) | Near-patient platforms<br>15-20/day, POC platforms<br>variable (dependent on<br>production vol and distr) | Up to 750k/day per machine                                                              | HT platforms 500-4k+/day,<br>POC platforms variable<br>(dependent on production<br>vol and distr) | HT platforms 500-4k+/day, POC<br>platforms variable (dependent<br>on production vol and distr) |
| Turnaround time              | 1-2 days for ref lab,<br>same-day for in-house, <45<br>min for near-patient, <15<br>min for POC       | 1-2 days for ref lab,<br>same-day for in-house,<br><30 min for POC                               | 1-2 days for ref lab, same-day<br>for in-house, <30 min for POC                                           | 1-3 days                                                                                | 1-2 days for ref lab,<br>same-day for in-house,<br><15 min for POC                                | 1-2 days for ref lab, same-day<br>for in-house, <15 min for POC                                |
| Sensitivity                  | Lab tests >98%, lower<br>for POC                                                                      | >95% for both lab and<br>POC tests                                                               | >95%                                                                                                      | > <b>99</b> %                                                                           | Lab tests >90%, POC tests variable from 50-80%                                                    | Lab tests 80-90+%, POC tests<br>highly variable                                                |
| Specificity                  | Lab tests >98%, lower<br>for POC                                                                      | Lab tests >95%, POC tests<br>>90%                                                                | >95%                                                                                                      | > <b>99</b> %                                                                           | >95%                                                                                              | Lab tests >95%, rapid tests<br>highly variable                                                 |
| Major benefits               | Gold standard diagnostic tool, large install base                                                     | More rapid than PCR,<br>visual readout,<br>isothermal amplification                              | More rapid than PCR, visual<br>readout, accessible lateral<br>flow format                                 | Massively scalable as<br>instruments configured to<br>run many samples in parallel      | Can be run on same platforms as serological tests                                                 | Massive capacity, limited sample processing required                                           |
| Major challenge/<br>drawback | Currently capacity constrained                                                                        | New install base required to scale                                                               | Technology has not been previously used at-scale                                                          | Logistics needed to collect<br>large volume of samples and<br>relay results to patients | Low sensitivity of POC tests                                                                      | Cannot be used to detect acute infections                                                      |
|                              |                                                                                                       | E                                                                                                | Emerging MDx technologies                                                                                 | S                                                                                       | First tests appearing                                                                             |                                                                                                |

### Tools to detect active, acute infection

1. Loop-mediated isothermal amplification; 2. Clustered Regularly Interspaced Short Palindromic Repeats; 3. Next-generation sequencing

## US How we test | current landscape of molecular diagnostic tests

TESTING TECHNOLOGIES AVAILABLE

|                                     | Individual LDTs                                                                                   | High-throughput IVD MDx <sup>1</sup>                                                                     | Rapid "near-patient" IVD MDx <sup>1</sup>                                                                   | PoC IVD MDx <sup>1</sup>                                                                                         |
|-------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>Examples</b><br>(not exhaustive) | LabCorp       Ouest Diagnostics*         JOHNS HOPKINS       Stanford Health care                 | Roche HOLOGIC                                                                                            | Cepheid.                                                                                                    | <b>Abbott</b>                                                                                                    |
| Description                         | MDx tests developed and used in-house<br>at academic and private labs                             | Large, high-volume automated<br>MDx platforms                                                            | Moderately portable (~30-40 lbs)<br>automated near-patient MDx platforms                                    | Portable (<10 lbs) platforms that can be used at various sites of care                                           |
| What is detected                    | Viral genome                                                                                      | Viral genome                                                                                             | Viral genome                                                                                                | Viral genome                                                                                                     |
| What<br>technologies                | PCR                                                                                               | PCR<br>Not yet available: LAMP <sup>2</sup> , TMA <sup>3</sup>                                           | PCR<br>Not yet available: CRISPR-based                                                                      | PCR, isothermal amplification<br>Not yet available: LAMP, CRISPR-based                                           |
| Where<br>deployed                   | Local academic medical centers and large reference labs                                           | Hospitals and large reference labs                                                                       | Clinical or field-based settings                                                                            | Multiple clinical and field-based settings                                                                       |
| Turnaround time                     | Wide variability depending on location<br>(same-day for in-house, 2-3 days for<br>reference lab)  | Logistics and batching workflows imply<br>1-2 days                                                       | <45 mins                                                                                                    | ~5-15 minutes                                                                                                    |
| Throughput<br>and scalability       | Throughput variable depending on<br>platform used, but as a whole cannot<br>be scaled effectively | Highly scalable due to high throughput<br>(~500-1000+ samples per day) and pre-<br>existing install base | Low throughput: 15-25 per day;<br>moderate scalability based on current<br>and potentially new install base | Moderate throughput: 60-90 per day;<br>moderate scalability based on current<br>and potentially new install base |
| Accuracy                            | MDx testing typically has high accuracy but can vary from lab-to-lab                              | High (98%+ specificity and sensitivity)                                                                  | High (98%+ specificity and sensitivity)                                                                     | Moderate (lower than high-throughput and near-patient MDx platforms)                                             |
| Sample type                         | Respiratory swab, saliva                                                                          | Respiratory swab                                                                                         | Respiratory swab                                                                                            | Respiratory swab                                                                                                 |

# How we test | Current landscape of immunoassay tests

|                                     |                                                                                                                                           |                                                                                                                                       | Available in US in next 1-2+ months                                                                                                       | First tests appearing                                                                             |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                     | Serological IgG/IgM (in lab)                                                                                                              | Serological IgG/IgM POC                                                                                                               | Antigen/Immunoassay (in lab)                                                                                                              | Antigen/Immunoassay POC                                                                           |
| <b>Examples</b><br>(not exhaustive) | Manual/semi-<br>automated Automated/high<br>throughput<br>Ortho<br>Clinical Diagnostics                                                   | SBD BioMedomics Cellex                                                                                                                | High-throughput lab-based tests not yet available as of 5/12/20                                                                           | <b>QUIDEL</b>                                                                                     |
| Description                         | Various formats of ELISA <sup>1</sup> to<br>qualitatively detect Abs in blood using<br>colorimetric assay                                 | Handheld "lateral flow" devices to<br>qualitatively detect Abs in blood (sign<br>of immune responses)                                 | Various formats of ELISA to<br>qualitatively detect viral protein using<br>colorimetric assay                                             | Portable "lateral flow" devices to<br>qualitatively detect viral proteins using<br>man-made Abs   |
| What is detected                    | Patient's antibodies                                                                                                                      | Patient's antibodies                                                                                                                  | Viral proteins                                                                                                                            | Viral proteins                                                                                    |
| What<br>technologies                | Lab-based immunoassays                                                                                                                    | Lateral flow immunoassays                                                                                                             | Lab-based immunoassays                                                                                                                    | Lateral flow immunoassays                                                                         |
| Where<br>deployed                   | Local academic medical centers, large reference labs, most large hospitals                                                                | Hospital ERs/ICUs, doctor's offices, community or retail clinics, at-home                                                             | Local academic medical centers and large reference labs                                                                                   | Hospitals ERs/ICUs, doctor's offices, community or retail clinics, at-home                        |
| Turnaround time                     | Wide variability depending on location<br>(same-day for in-house, 2-3 days for<br>reference lab)                                          | 5-15 minutes                                                                                                                          | Wide variability depending on location<br>(same-day for in-house, 2-3 days for<br>reference lab)                                          | ~5-15 minutes                                                                                     |
| Throughput<br>and scalability       | Depends on workflow, automated high<br>throughput (~500-4000+ tests per day),<br>manual/semi-automated flexible for<br>low sample volumes | Low throughput (60-100 per day) but<br>high scalability as tests can be<br>distributed widely                                         | Depends on workflow, automated high<br>throughput (~500-4000+ tests per day),<br>manual/semi-automated flexible for<br>low sample volumes | Low throughput (60-100 per day) but<br>high scalability as tests can be<br>distributed widely     |
| Accuracy                            | Moderate to very high (from ~80-90%<br>sensitivity, ~95% specificity <sup>2</sup> to<br>>95% for both)                                    | Highly variable as many tests are sold<br>without usual regulatory review<br>Typically lower accuracy compared to<br>lab-based assays | Varies depending on protein being detected, typically moderate to high                                                                    | Highly variable, typically lower accuracy<br>compared to lab-based assays (50-80%<br>sensitivity) |
| Sample type                         | Venipuncture                                                                                                                              | Primarily finger prick<br>(some venipuncture)                                                                                         | Patient sample TBD; likely nasal<br>swab, saliva                                                                                          | Patient sample TBD; likely nasal<br>swab, saliva                                                  |

# Need to evaluate tests along several key dimensions

### Speed

Time from "sample to answer", including sample collection, logistics to send out the sample, sample processing, time to run and interpret test

## Sensitivity

Ability to detect Covid-19 in all patients who have the disease (avoiding false negative results for ill/infectious patients)

## Specificity

Ability to distinguish Covid-19 from other similar viruses, avoiding false positive results for patients who do not have the disease

Together, these metrics provide the accuracy of the test

### Cost

Cost per test, driven by the reagents (chemical ingredients) needed, as well as the labor to collect and process samples

## Throughput

Rate of tests that can be analyzed (e.g., per day, per week)

## Sample type

Type of clinical sample, e.g., oral or nasal swab, blood sample, lower respiratory swab. Implications for access, supplies needed, cost, and accuracy

## No diagnostic test is perfect!

Typical tradeoffs that exist in diagnostic testing

- Speed vs. sensitivity/specificity
- Cost vs. sensitivity/specificity
- Cost vs. throughput

Accuracy of testing has critical implications for effective medical response and containment; molecular and serological tests are the current options in US



|                                                                                                          |             |             | For 100k tests ac<br>assumed disease<br>Sick patients (5K)           | dministered <sup>1</sup> and<br>prevalence of 5%<br>Healthy patients (95K) | U                        | se cases by disease st                | ate                                  |
|----------------------------------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|---------------------------------------|--------------------------------------|
|                                                                                                          | Sensitivity | Specificity | False Negative Patients<br>(sick patient mis-<br>diagnosed negative) | False Positive Patients<br>(healthy patients mis-<br>diagnosed positive)   | Disease-naïve            | Symptomatic                           | Recovered                            |
| <b>Molecular "gold standard"</b><br>May detect ~2-4 days<br>before onset                                 | 98%         | 99%         | 100                                                                  | 950                                                                        | 1 Pop. health            | Diagnose                              |                                      |
| <b>Molecular POC</b><br>May detect ~2-4 days<br>before onset                                             | 90%         | 95%         | 500                                                                  | 4,750                                                                      | 4 Workforce<br>testing & | and triage<br>symptomatic<br>patients |                                      |
| Rapid antigen tests <sup>2</sup><br>May detect virus on similar<br>timing as molecular testing           | 80%         | 99%         | 1000                                                                 | 950                                                                        | monitoring               | · · · ·                               |                                      |
| <b>"Gold standard" serology</b><br>Detection ~6-10 days after<br>symptom onset                           | 95%         | 95%         | 250                                                                  | 4,750                                                                      |                          |                                       | 3 Immune<br>response                 |
| Rapid finger-stick serology<br>"high quality"<br>Detection ~6-10 days after<br>symptom onset             | 75%         | 95%         | 1,250                                                                | 4,750                                                                      |                          |                                       | testing for<br>recovered<br>patients |
| Rapid finger-stick serology<br>"low quality" <sup>3</sup><br>Detection ~6-10 days after<br>symptom onset | 30%         | 60%         | 3,500                                                                | 38,000                                                                     |                          |                                       |                                      |

1. Roughly equivalent to US nationwide daily throughput as of March 31, 2020 2. Estimated using Quidel antigen test; while the specificity of that test was reported as 100% from 84 samples, 99% was used here as 100% specificity in unlikely in a large patient sample 3. The Guardian ("Coronavirus test kits withdrawn in Spain over poor accuracy rate", March 27, 2020)

Source: Expert interviews, Popular press articles, Product specifications, BCG analysis



COVID-19 diagnostic testing use cases

Testing technologies available

Observed capacity and unlocks to scale

Global learnings from scaling COVID-19 testing

### US, MDx (PCR)

Observed MDx capacity has broken through previous plateau of ~1.1M tests/week and has now reached >2.5M tests/week



1. As of Apr 22, CA, OK and FL switched from reporting patients tested to total tests conducted; VA currently combines serological and MDx test results; reported numbers also likely impacted by large reporting backlog being cleared

Source: covidtracking.com; expert interviews; State COVID-19 websites, The Atlantic: "How Virginia Juked Its COVID-19 Data", May 13, 2020; The Richmond Times-Dispatch; BCG analysis

OBSERVED CAPACITY AND UNLOCKS TO SCALE US, MDx (PCR) Molecular diagnostics: US currently processing ~200-350K tests/day, or ~40-70% of its pragmatic installed base potential



**OBSERVED CAPACITY** 

AND UNLOCKS TO SCALE

1. Assuming continuous operation of all instruments compatible with COVID-19 tests approved to date in the US over 16 hrs shift 2. Net set up and maintenance time mandated by instrument safe operation procedures, downtime inherent in workflows 3. Trailing 7 day average as of May 10, 2020, stable since late April 2020 4. Excl. testing kits themselves which are not considered limiting Note: MDx = Molecular diagnostics. Numbers shown reflect number of people tested (not number of PCR reactions run) Source: BCG analysis, Company SEC filings, investor communications and public announcements; CDC website

# New technologies can unlock additional MDx capacity

| Technology                    | Platforms                        | Description                                                                                                                                                                                        | Impact on MDx capacity                                                                                                                                                                                                    |
|-------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LAMP <sup>1</sup>             | High-throughput,<br>portable/POC | <ul> <li>Method to amplify genetic material at a single temperature (isothermally) more rapidly than PCR</li> <li>Can be performed in a single tube and result can be visually detected</li> </ul> | <ul> <li>Can utilize/repurpose existing capacity<br/>of all MDx equipment</li> <li>Can also utilize other simpler<br/>equipment (heat block, water bath)<br/>to run tests (in addition to<br/>MDx instruments)</li> </ul> |
| NGS-based <sup>2</sup>        | High-throughput                  | <ul> <li>Method to detect specific<br/>viral sequences after initial<br/>amplification step</li> <li>Can run many patient samples<br/>in parallel</li> </ul>                                       | <ul> <li>Can add significant capacity at national scale</li> <li>Would need to use existing install base of MDx instruments at labs with sequencing equipment</li> </ul>                                                  |
| CRISPR-<br>based <sup>3</sup> | Near-patient,<br>POC             | • After isothermal amplification, CRISPR-<br>mediated targeting of viral genetic<br>material leads to activation of readout<br>signal that can be detected on a lateral<br>flow device or reader   | <ul> <li>New capacity with new equipment</li> <li>Incremental to current installed base</li> <li>Additional capacity from lateral flow<br/>POC tests</li> </ul>                                                           |

1. Loop-mediated isothermal amplification; 2. Next-generation sequencing; 3. Clustered repeating interspaced short palindromic repeats (DNA sequence that is the basis of a nucleic acid-targeting system)

### US, Immunoassay (antigen)

Like molecular tests, antigen tests can also be used to detect the presence of the virus; tradeoffs between speed/ease and sensitivity

|                        | Molecular (PCR) tests                                                                                                  | Antigen tests <sup>2</sup>                                                                                                                                                   |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| What is being detected | Genetic material (RNA) that is specific to the virus                                                                   | A specific antigen (often a protein or part of a protein) on the surface of the virus                                                                                        |  |  |
| Sample type            | Nasal/nasopharyngeal swabs, saliva                                                                                     | Nasal/nasopharyngeal swabs, saliva                                                                                                                                           |  |  |
| Detection<br>method    | Virus-specific RNA fragments are amplified via PCR <sup>1</sup> ; instrument detects if/when signal is above threshold | Specific antibodies are used to detect if viral antigen is present in sample; readouts are either visual for rapid tests or fluorescent/chemiluminescent for lab-based tests |  |  |
| Platforms              | Lab-based or near-patient/POC platforms (equipment required for all)                                                   | Rapid POC lateral-flow assays or lab-based tests (equipment required for lab-based only)                                                                                     |  |  |
| Major benefit(s)       | <ul> <li>More accurate (&gt;90% sensitivity, &gt;95% specificity)</li> </ul>                                           | <ul> <li>Increased scalability: Higher capacity on<br/>high-throughput instruments</li> <li>POC tests require either no or less<br/>complex equipment</li> </ul>             |  |  |
| Major drawback         | Currently capacity strained                                                                                            | <ul> <li>Less accurate (50-90% sensitivity, higher for POC<br/>tests with automated readers or tests on<br/>high-throughput instruments)</li> </ul>                          |  |  |

1. Polymerase chain reaction; 2. Only 1 antigen test with EUA approval for COVID-19 available, based on other antigen tests for other diseases/conditions (e.g. influenza, HIV, hepatitis) Source: Ghebremedhin B et al, J Med Microbiol, 2009; MIT Technology Review; CDC; BCG analysis Copyright © 2020 by Boston Consulting Group. All rights reserved.

Antigen tests can be a valuable diagnostic tool, but need to understand risks and implications



When MDx testing capacity is unavailable, limited, or needed for higher priority use cases, antigen tests can be used to diagnose acute infections by detecting presence of viral antigen (protein) ...

... however, lower sensitivity will lead to >10x more false negative results compared to gold standard MDx tests, which is exacerbated in populations with higher disease prevalence ...



... therefore, need to understand underlying disease prevalence and consider risk tolerance of population to use antigen tests in an informed manner

OBSERVED CAPACITY

AND UNLOCKS TO SCALE **Rapid** and automated immunoassays (antibody and antigen tests)

Basic sense-check needed to screen products entering market with limited regulatory oversight

Has the product received Emergency Use Authorization (EUA) from the US FDA?

- If not, has the manufacturer at least notified the FDA under the policy outlined in Section IV.D?
  - notifying the FDA does NOT mean that the FDA reviewed the product; check fda.gov for latest info on both



Does the product come with a product insert?



Does it have clearly described testing and result read-out directions?

Was test accuracy evaluated on real patient samples?

- Does the insert clearly state what samples were used for the study?
- Is it clear at what stage in the infection those samples were taken? Does this approximate population that you intend to test?



Was the number of samples used in the study high enough?

• At least 250 positive and 125 negative or more



Does the insert include information on test accuracy?

- Are both sensitivity and specificity clearly stated? If IgM and IgG antibody responses are both tested, are separate accuracy data listed for each?
- Is the accuracy high enough for intended use (i.e., Is the no. of false positives and false negatives acceptable)? Does the test claim to have 100% accuracy and specificity (not possible for a serological, or any other test)? Clinical Dx tests for a disease like COVID-10 likely need >90% sensitivity/>95% specificity

### Independent technical validation, QA/QC is then needed to implement testing



**OBSERVED CAPACITY** 

AND UNLOCKS TO SCALE

## US, Immunoassay (antibody) Initial study of rapid serology tests reveals wide variability in test performance

|                       |                 | •   | S    | Sensitivity |       |      |             |
|-----------------------|-----------------|-----|------|-------------|-------|------|-------------|
| Days since symptom    | onset:          | 1-5 | 6-10 | 11-15       | 16-20 | >20  | Specificity |
|                       | BioMedomics     | 27% | 61%  | 74%         | 76%   | 82%  | 88%         |
|                       | Bioperfectus    | 41% | 74%  | 80%         | 76%   | 100% | 97%         |
| IgM                   | DecomBio        | 32% | 67%  | 85%         | 70%   | 91%  | 91%         |
| 0                     | DeepBlue        | 44% | 78%  | 80%         | 76%   | 91%  | 84%         |
|                       | Innovita        | 15% | 33%  | 38%         | 29%   | 17%  | 96%         |
| Indicative of earlier | Premier         | 37% | 71%  | 80%         | 76%   | 91%  | 98%         |
| point in infection    | Sure-Bio        | 11% | 43%  | 63%         | 67%   | 73%  | 100%        |
| point in incotion     | UCP Biosciences | 26% | 58%  | 74%         | 71%   | 91%  | 98%         |
|                       | VivaDiag        | 29% | 63%  | 84%         | 71%   | 90%  | 95%         |
|                       | Wondfo          |     |      |             | N/A   |      |             |
|                       | BioMedomics     | 23% | 53%  | 68%         | 67%   | 82%  | 96%         |
|                       | Bioperfectus    | 26% | 66%  | 77%         | 67%   | 90%  | 98%         |
| ige                   | DecomBio        | 28% | 67%  | 85%         | 70%   | 91%  | 92%         |
| -                     | DeepBlue        | 22% | 50%  | 60%         | 71%   | 82%  | 99%         |
| Indicative of later   | Innovita        | 26% | 47%  | 76%         | 64%   | 67%  | 100%        |
| point in infection or | Premier         | 22% | 51%  | 63%         | 67%   | 82%  | 99%         |
| point in incetion of  | Sure-Bio        | 19% | 54%  | 71%         | 67%   | 91%  | 100%        |
|                       | UCP Biosciences | 26% | 50%  | 71%         | 67%   | 82%  | 98%         |
| immunity              | VivaDiag        | 29% | 63%  | 81%         | 67%   | 90%  | 96%         |
|                       | Wondfo          | N/A |      |             |       |      |             |
|                       | BioMedomics     | 31% | 64%  | 77%         | 81%   | 82%  | 87%         |
|                       | Bioperfectus    | 41% | 77%  | 86%         | 81%   | 100% | 95%         |
|                       | DecomBio        | 32% | 67%  | 85%         | 70%   | 91%  | 90%         |
|                       | DeepBlue        | 44% | 78%  | 80%         | 81%   | 91%  | 84%         |
| Overall               | Innovita        | 26% | 56%  | 76%         | 64%   | 83%  | 96%         |
| (IgM and/or IgG)      | Premier         | 37% | 71%  | 83%         | 81%   | 91%  | 97%         |
| (Igivi anu/or igo)    | Sure-Bio        | 19% | 54%  | 71%         | 71%   | 91%  | 100%        |
|                       | UCP Biosciences | 26% | 58%  | 77%         | 71%   | 91%  | 98%         |
|                       | VivaDiag        | 29% | 63%  | 84%         | 71%   | 90%  | 95%         |
|                       | Wondfo          | 40% | 67%  | 82%         | 81%   | 82%  | 99%         |

### **Observations and indications**

Test performance improves the longer you wait to test after symptom onset; limits utility for timely population monitoring

Generally, IgG detection is more specific than IgM detection

Combining results for IgM and IgG improves detection sensitivity<sup>1</sup>

There is a trade-off between sensitivity and specificity

More studies are needed to evaluate new tests as they enter the market prior to widespread use

Note: High sensitivity implies low <u>false negatives</u> while high specificity implies low <u>false positives</u>

<u>s</u> >90% 80-89%

39% <80%

1. Wondfo's test reports single band for both IgM and IgG

Source: COVID Testing Project and pre-print manuscript ("Test performance evaluation of SARS-CoV-2 serological assays") by UCSF, UC Berkeley, Chan Zuckerberg Biohub, Innovative Genomics Institute researchers

**OBSERVED CAPACITY** 

AND UNLOCKS TO SCALE

### US, Immunoassay High-throughput immunoassay testing: total pragmatic platform capacity in US ~10x higher than that for mdx tests None of these tests are currently run, expected in weeks to 2 months

#### OBSERVED CAPACITY AND UNLOCKS TO SCALE



1. Assuming continuous operation of all currently installed immunoassay instruments over 16 hrs shift 2. Net set up and maintenance time mandated by instrument safe operation procedures, downtime inherent in workflows 3. Not accounting for availability of kits themselves which are expected to be limiting 4. Proportion of capacity used for antigen testing will depend on development timeline and relative demand5. Can only run tests for which manufacturer has assays available on their menu 6. Can run "home-brew" assays and compatible assays by other manufacturers

Source: Company SEC filings, investor communications and public announcements; CDC website; BCG analysis

- Aggregate platform capacity nationwide is not limiting testing in US today
- Regional workload imbalances (i.e., some labs with backlogs while others with unfilled capacity), sample collection and RNA extraction reagent shortages are key limitations
- Addressing reagent shortages and balancing workload among labs are the best ways of boosting capacity in the short term



COVID-19 diagnostic testing use cases

Testing technologies available

Observed capacity and unlocks to scale

Global learnings from scaling COVID-19 testing

Varied testing and containment responses by different countries have corresponded with a range of outcomes



|                              | Aggressive testing + contact tracing                                                                                                                                         | Aggressive testing +<br>delayed lockdown                                                                                                                                                          | Limited testing +<br>earlier lockdown                                                                                                                                                                      | Limited testing +<br>delayed/partial lockdown                                                                                                                                                                          |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples<br>(non-exhaustive) | S. Korea                                                                                                                                                                     | Germany                                                                                                                                                                                           | Italy & France                                                                                                                                                                                             | USA                                                                                                                                                                                                                    |
| Description                  | <ul> <li>Quick test validation and<br/>widespread use</li> <li>Very robust, automated<br/>contact tracing system</li> <li>Targeted isolation and<br/>quarantining</li> </ul> | <ul> <li>Quick test validation and<br/>widespread use</li> <li>Strict national social<br/>distancing guidelines with<br/>some states in lockdown<br/>when national cases were<br/>~18K</li> </ul> | <ul> <li>Slow testing ramp-up</li> <li>Gradual or non-uniform<br/>implementation of national<br/>containment measures</li> <li>Lockdowns implemented<br/>when national cases were ~7-<br/>8K</li> </ul>    | <ul> <li>Slow testing ramp-up</li> <li>Non-uniform implementation<br/>of containment measures<br/>(some states still not in<br/>lockdown)</li> <li>30 states in lockdown when<br/>national cases were ~150K</li> </ul> |
| Outcomes <sup>1</sup>        | <ul> <li>New cases have slowed to ~15/day</li> <li>Cumulative cases plateaued at ~11K (210/1M people)</li> </ul>                                                             | <ul> <li>New case rate has slowed<br/>from ~6K/day at its peak to<br/>~350/day currently</li> <li>Cumulative case growth<br/>slowing, currently at ~170K<br/>(2K/1M people)</li> </ul>            | <ul> <li>New case rates have slowed<br/>from ~6-8K/day at their peaks<br/>to &lt;1K/day currently</li> <li>Cumulative case growth<br/>slowing, currently at ~140-<br/>220K (2.1-3.6K/1M people)</li> </ul> | <ul> <li>New case rates have<br/>plateaued at ~25K/day</li> <li>Cumulative cases continue to<br/>grow, currently at 1.5M<br/>(4.6K/1M people)</li> </ul>                                                               |

Global testing coverage varies across the globe; countries beginning to re-open economies with testing ratios of ~20+ tests/confirmed case



GLOBAL LEARNINGS

FROM SCALING TESTING Variation in testing coverage suggests that re-opening should happen regionally with additional assessment of other containment measures in place



US

• Each state's tests/case ratio is highly dependent on **where they are along the epidemiological curve**, which varies from state-to-state (a high ratio will drop as cases grow if testing capacity is not expanded)

- State-by-state test reporting may vary (e.g. VA counting serological tests along with MDx tests)
- While a ratio of ~20 tests/case may be sufficient for a state under lockdown, **an "open" state will need higher testing coverage** to perform sufficient surveillance testing and contact tracing as disease incidences increase

### **Key implications**

Some states/regions observed to have higher test coverage, a key component to re-open the economy

**GLOBAL** 

LEARNINGS FROM SCALING TESTING

Beyond testing coverage, other measures and factors are critical for determining when and how to re-open specific regions

- Contact tracing
- Enforced social distancing policies
- Symptom monitoring
- Self-isolation and quarantining
- Capacity to expand testing upon resurgences

With more of the above measures in place, a lower test/case ratio may be sufficient

Copyright © 2020 by Boston Consulting Group. All rights reserved

## Testing more per case enables informed decision making and implementation of effective outbreak containment measures



|                         | Flatten                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 | Fight                                                                                                                                                                   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | ~5-10 tests per case<br>(US currently at ~7 <sup>1</sup> )                                                                                                                                                                                                | ~20+ tests per case                                                                                                                                                                                                                                             |                                                                                                                                                                         |
| Who is<br>being tested? | <ul> <li>Only symptomatic patients<br/>(including those with similar<br/>conditions but not COVID-19)</li> </ul>                                                                                                                                          | <ul> <li>Symptomatic patients</li> <li>Direct contacts of<br/>confirmed cases</li> <li>Some high-risk populations</li> </ul>                                                                                                                                    | Additional testing<br>required beyond ~20<br>tests/case for                                                                                                             |
| mplications             | <ul> <li>Limited understanding of actual disease prevalence</li> <li>Asymptomatic cases go undetected and can unknowingly spread disease</li> <li>Inability to trace second-order contacts of positive case without testing of direct contacts</li> </ul> | <ul> <li>Improved tracking of disease prevalence</li> <li>Some asymptomatic cases caught via contact tracing</li> <li>Informed isolation and treatment of direct contacts as well as second-order contact tracing from any discovered positive cases</li> </ul> | <ul> <li>additional monitoring<br/>and surveillance<br/>(e.g., expanded high-<br/>risk populations,<br/>workforce testing,<br/>broad population<br/>sampling</li> </ul> |

Copyright © 2020 by Boston Consulting Group. All rights reserved.



# Team responsible for the work

# Covid-19 Diagnostic Project Team contacts; please reach out **BCC** for any required support



**Bob Lavoie** Managing Director & Partner



Barry Rosenberg, MD Managing Director & Senior Partner



Laura Furmanski Managing Director & Partner



Josh Kellar, PhD Managing Director & Partner



Kristen Cook, PhD Principal



Austin Lee Project Leader



Vlada Chalei, DPhil Consultant



Phil Kang, PhD Consultant



**Chris Dingus** Consultant



**Stephanie Miller** Senior Knowledge Analyst

# Disclaimer

The services and materials provided by Boston Consulting Group (BCG) are subject to BCG's Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client ("Third Party") without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.

The situation surrounding COVID-19 is dynamic and rapidly evolving, on a daily basis. Although we have taken great care prior to producing this presentation, it represents BCG's view at a particular point in time. This presentation is not intended to: (i) constitute medical or safety advice, nor be a substitute for the same; nor (ii) be seen as a formal endorsement or recommendation of a particular response. As such you are advised to make your own assessment as to the appropriate course of action to take, using this presentation as guidance. Please carefully consider local laws and guidance in your area, particularly the most recent advice issued by your local (and national) health authorities, before making any decision.